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Abstract

A common problem arising in new particle search experiments is to determine upper limits
on a signal cross section, combining more than one channel (for example e and µ) and incor-
porating the effects of systematic errors, which may or may not be correlated across channels.
This note describes a Bayesian procedure for performing such a calculation.

1 Motivation

Quite often one searches for a new particle or phenomenon using a number of final states,
or “channels.” For example, in the search for Z ′ → `+`−, one can look at final states with
Z ′ → e+e− as well as Z ′ → µ+µ−. Given a model for the production and decay branching
ratios of the Z ′ to these final states, one may wish (in the absence of a discovery!) to set 95%
CL upperlimits on the Z ′ production cross section.

In general, also, in setting limits one would like to incorporate the effects of systematic
uncertainties. For example the expected background, the signal accceptance, and other factors
may not be perfectly known; this lack of knowledge should weaken the limit one obtains.

Further complicating the picture is the fact that in many cases these systematic uncertain-
ties can be correlated, which can weaken further the limit one might obtain. As the magnitude
of such uncertainties grows the effects of correlated and uncorrelated uncertainties cannot be
neglected.

This note outlines a procedure based on the commonly employed Bayesian integration
technique for calculating such upper limits. For simplicity the case illustrated here is that of
combining two or more single-channel counting experiments. The method has been employed in
the recent stop → tau [1] and Z ′ [?]searches in CDF, which are examples of this. The method,
however, is generalizable to much more complicated situations, including fits to kinematic
spectra and unbinned likelihoods.
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2 Bayesian limits with no systematics

Let the expected cross section of some signal process for which we search be σsig. Suppose there
are Nch search channels, in which one observes ni events, with i = 1, 2, ...Nch. in each channel,
furthermore, assume the expected number of background events is bi, and the acceptance is εi.

In the absence of any systematic errors one can form a joint likelihood from the product of
the individual channel likelihoods as

L(n̄|σsig, b̄, ε̄) =
Nch
∏

i=1

µni

i e−µi

ni!
(1)

where the expected number of events µi in each channel can be written

µi = Liσsigεi + bi . (2)

Here Li is the integrated luminosity of the data sample used for each channel. (The overbars
indicate that the variables are arrays carrying an i index.)

Given the likelihood, Bayes’ Theorem can be used to derive a posterior probability density
as a function of the signal cross section. We write this as

P(σsig|n̄, b̄, ε̄) =
L(n̄|σsig, b̄, ε̄)P (σsig)

∫

∞

0
L(n̄|σ′

sig, b̄, ε̄)P (σ′

sig)dσ′

sig

. (3)

The function P (σsig) is the prior probability density for the (unknown) signal cross section
and expresses the prior knowledge of its value. For example, we know that P (σsig < 0) = 0
for real physics processes. Typically one takes P (σsig to be uniform, at least up to some large
value well beyond the eventual upper limit so that it remains normalizable. Of course the
eventual answer one obtains can depend on the choice of prior, and this is a matter of some
debate in the statistics community, but beyond the scope of this note. The method described
here can be employed with whatever prior is chosen.

To obtain a 95% CL upper limit, then, one would find that value of σ95 such that
∫ σ95

0
P(σ′

sig|n̄, b̄, ε̄)dσ′

sig = 0.95 . (4)

3 Bayesian limits with systematics

The usual way to incorporate the effects of systematic uncertainties (also called nuisance
paramters) is to convolute the Poisson probability with a function representing the prior prob-
ability density in each paramter; usually one uses a Gaussian. Then one “marginalizes” the
nuisance parameters by integrating over them. We might, for example, write the likelihood
for a single channel, marginalized with respect to an uncertain acceptance, as

L(n|σsig, b, ε) =
1

√

2πσ2
ε

∫

∞

0

µ′ne−µ′

n!
e−(ε′−ε)2/2σ2

ε dε′ . (5)

The extension of the technique to additional systematic uncertainties is straightforward. Note
that the value of the integrand ε′ is used to calculate µ at any point.

One can evaluate such an integral by standard grid sampling techniques, or by a Monte
Carlo technique. To comprehend the Monte Carlo approach, firstly note that mathematically,
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the integral is in essence a Gaussian-weighted average Poisson probability. One can readily
calculate this average by repeatedly sampling the Poisson probability, drawing the value of ε′

from a Gaussian distribution, and averaging the samples.
For the more complicated cases where there are multiple systematic uncertainties, and

multiple channels, the Monte Carlo techniques converges very rapidly – much more rapidly
than when standard grid sampling numerical techniques are applied. The accuracy of the
intregration scales as the inverse of the square root of the number of Monte Carlo samples.

4 Correlated and uncorrelated systematics

Having described how to incorporate systematic uncertainties in general by marginalization,
it remains to deal separately with correlated and uncorrelated uncertainties.

An example of a correlated systematic error might be the uncertainty on the integrated
luminosity for each channel Li. Though the Li may be different, the relative systematic
uncertainty may be the same for each, and completely correlated between the Li. For the
acceptance in each channel, there may be sources of uncertainty which are correlated (such as
Q2 scale effects) and those which are uncorrelated (such as Monte Carlo statistics or lepton
ID efficiency).

Noting that the systematic effects all enter through the “smeared” expected number of
events µ′

i. It is this value that varies from random point to random point during the Monte
Carlo integration. It is convenient to express the shifts in the parameters affected by systematic
uncertainty by multiplying the central value of the parameter by a term of the form (1 + f)
where f is a random relative offset which takes into account the Gaussian variation of the
parameter around its mean. In each channel, we can write the expected number of events
during the Monte Carlo integration as

µ′

i = (1 + gL)Lσsig(1 + fεi)(1 + gε)εi + (1 + fbi)(1 + gb)bi . (6)

The key to the technique described here is that the f and g factors here encode the relative

uncorrelated and correlated systematic uncertainties, respectively. (Note that the f ’s carry i
indices and the g’s do not.) To perform the Monte Carlo integration, then, it suffices to allow
the f and g factors to vary within their Gaussian widths around a central value of zero, and
average the resulting likelihoods.

Of course, this is not the only form that the expected number of events can take. For
example, the expected background (or a portion of it) may depend on the integrated luminosity
and would then be affected by that systematic error. However, as long as the expected number
of events can be written in a form such that the systematic uncertainties can be expressed
through f and g terms, the method can be readily adapted to calculate the marginalized
likelihood.

Given the marginalized likelihood calculated in this way, one can again convert it to a
posterior density in the signal cross section using Bayes’ Theorem as before and obtain the
desired confidence intervals..

5 Performance of the method

The method described above has been implemented in a program which steps through 10000
signal cross section points over a suitable range, and at each point performs a Monte Carlo
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n1 ε1 fε1 b1 fb1 n2 ε2 fε2 b2 fb2 gε gb σ95

3 0.2 0.2 3.0 0.1 - - - - - - - 31.6
3 0.2 0.2 3.0 0.1 3 0.2 0.2 3.0 0.1 0.0 0.0 18.4
3 0.2 0.0 3.0 0.1 3 0.2 0.0 3.0 0.1 0.2 0.0 20.0
3 0.2 0.0 3.0 0.1 3 0.2 0.0 3.0 0.1 0.3 0.0 28.6

Table 1: Result of 95% CL upper limit on signal cross section, from a single channel, the combination
of two channels with uncorreelated systematic errors, and combining two channels with correlated
systematic errors.

integration utilizing thousands of random samples. The convergence of the integration can
be studied by plotting the limit as a function of 1/

√
NMC and fitting a line: the intercept

corresponds to extrapolating to infinite statistics.
There are several features of the method described above that one desires:

• The method should give a smaller (more stringent) upper limit when channels are com-
bined than those for the individual channels.

• The method should give less stringent limits as the systematic uncertainties increase.

• The method should give less stringent limits for correlated uncertainties than for equiv-
alent uncorrelated uncertainties.

To test whether these properties hold, we can inspect the limits reported in Table 1 for
various cases involving one or two channels, and a value L = 1 with no systematic uncertainty.
(The diligent reader will find that they indeed do hold.)

While these are necessary properties for any channel combination method, they are perhaps
not sufficient. Ultimately, frequentists need to study the frequentist coverage of the confidence
intervals; Bayesians are unconcerned with coverage.

Appendix - corlim.f Program

There exists a Fortran program to calculate the upper limit on a signal process, based
on combining the observation in one or more channels using the method described in
this note. [4]

The program, corlim.f, is driven by a data file containing a table of the experimental
results, the integrated luminosity, the acceptance and expected background, and all
coorelated and uncorrelated uncertainties. Figure 1 shows the data file used to calculate
the results shown in Table 1, with annotations indicating the various components of the
table.
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    1   150.000

    1

    3    1.0000    0.2000    0.2000    3.0000    0.2000

    0

--------------------------------------------------------

    2   150.000

    2

    3    1.0000    0.2000    0.2000    3.0000    0.2000

    3    1.0000    0.2000    0.2000    3.0000    0.2000

    0

--------------------------------------------------------

    3   150.000

    2

    3    1.0000    0.2000    0.0000    3.0000    0.2000

    3    1.0000    0.2000    0.0000    3.0000    0.2000

    1

    1  acceptance correlated uncertainty

    0.2000    0.2000

    0.0000    0.0000

--------------------------------------------------------

    4   150.000

    2

    3    1.0000    0.2000    0.0000    3.0000    0.2000

    3    1.0000    0.2000    0.0000    3.0000    0.2000

    1

    1  acceptance correlated uncertainty

    0.3000    0.3000

    0.0000    0.0000

--------------------------------------------------------

case 1,  integration 

maximum 150.0

number of 

channels = 1

number of sources 

of correlated 

uncertainty =0

this line has number of observed events,

integrated luminosity, acceptance, uncorrelated 

uncertainty  on acceptance, expected background, 

and  uncorrelated uncertainty on background

here we add a

second channel 

here we add one source of

correlated uncertainty:

20% relative uncertainty

on the signal acceptance

for each source of correlated

uncertainty, the lines in this section are 

respectively for signal and background

in this section there 

is one column per channel

each case is separated

by one line which can

be anything

number of sources 

of correlated 

uncertainty =1,

with name

Figure 1: Example data file for the corlim.f program, annotated with the locations of various
parameters.
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